ووقع عيون البصائر التعليمي

الجمهورية الجزائرية اليمقراطية الشعبية وزارة التربية الوطنية

دورة: **2022** الشعبة: علوم تجريبية

الديوان الوطني للإمتحانات والمسابقات إمتحان بكالوريا تجريبي

ثانوية: الشهيد صحيح أمحمد - الرمكة

المدة: 03 ساعات و30د

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين الأتيين:

الموضوع الأول

التمرين الأول: (04 نقاط)

يحتوي صندوق على خمس كرات بيضاء, ثلاثة حمراء وكرتين سوداوين متشابهة لا نفرق بينها باللمس. نسحب عشوائيا وفي آن واحد أربع كرات من الصندوق.

نعتبر الحادثتين : A"الحصول على كرة حمراء واحدة فقط ", B "الحصول على كرة بيضاء على الأقل" .

- . B احتمال الحدث P(B) بين أن $P(A) = \frac{1}{2}$ احتمال الحدث (1
- 2) نعتبر المتغير العشوائي X الذي يرفق بكل مخرج عدد الكرات الحمراء المسحوبة . أ) عين قيم المتغير العشوائي X.
 - $P(X = 2) = \frac{3}{10}$ و $P(X = 0) = \frac{1}{6}$: بين أن
 - E(X) عرف قانون الاحتمال للمتغير العشوائي X ثم أحسب أمله الرياضي (3
 - $\sigma(X)$ أحسب الانحراف المعياري (4

التمرين الثاني: (04 نقاط)

أجب بصح أو خطأ مع التبرير في كل حالة من الحالات التالية:

- $f(x) = \ln(x^2 + 2x + 3)$: بالدالة f المعرفة على π بالدالة f(-2-x) = f(x) لدينا: f(-2-x) = f(x)
- , n عدد طبيعي من أجل كل عدد طبيعي , $u_0=e^{-\frac{1}{2}}$ عدد طبيعي e أجل كل عدد طبيعي (u_n) (2 $\frac{n^2+1}{2}$: يساوي S_n , $S_n=\ln \left(u_0\times u_1\times ...\times u_n\right)$
 - (3) الدالة g المعرفة على المجال $G(x) = 2x + 1 + \frac{1}{x^2}$ بالمجال $G(x) = x^2 + x \frac{1}{x} 1$ معرفة بالمجال $G(x) = x^2 + x \frac{1}{x} 1$ معرفة بالمجال $G(x) = x^2 + x \frac{1}{x} 1$ معرفة بالمجال $G(x) = x^2 + x \frac{1}{x} 1$
- 4) يتكون فريق عمل من 4 اناث و 3 ذكور, يراد تشكيل لجنة تضم 3 أعضاء . احتمال أن تكون اللجنة من الجنسين هو: $\frac{6}{7}$

التمرين الثالث: (04 نقاط)

 $u_0=\alpha$ عدد طبيعي عدد طبيعي المتتالية العددية المعرفة بحدها الأول $u_0=\alpha$ المتتالية العددية المعرفة بحدها الأول

$$u_{n+1} = \frac{46}{47}u_n + 43$$

جد قيمة α حتى تكون المتتالية (u_n) ثابتة.

elbassair.net

 $\alpha = 2022$: نفرض أن

 $V_{n}=U_{n}-2021$: كمايلي كمايلي المعرفة على المعرفة المعر

- لين أن المتتالية (v_n) هندسية يطلب تعيين أساسها وحدها الأول (1
 - n اکتب عبارهٔ v_n بدلالهٔ n , ثم استنتج عبارهٔ (2
 - . (u_n) أدرس اتجاه تغير المتتالية (3
 - $\lim_{n\to+\infty} u_n$ أحسب (4

$$S_n = \frac{u_0}{v_0} + \frac{u_1}{v_1} + \dots + \frac{u_n}{v_n}$$
 , n يضع من أجل كل عدد طبيعي (5

$$\lim_{n\to+\infty}\frac{S_n}{n}$$
 بدلالة n , ثم أحسب -

التمرين الرابع: (08 نقاط)

- $g(x) = x^2 2 + \ln x$: يعتبر الدالة العددية g المعرفة على المجال $g(x) = x^2 2 + \ln x$ المعرفة على المجال المعرفة على ا
 - $\lim_{x \to \infty} g(x)$ و $\lim_{x \to \infty} g(x)$ أحسب (1)
 - 2) أدرس اتجاه تغير الدالة g وشكل جدول تغير اتها.
- g(x) قبل حلا وحيدا α حيث: α عند استنتج إشارة g(x) = 0 بين أن المعادلة g(x) = 0 تقبل حلا وحيدا
- ال. لتكن الدالة f المعرفة على g: g: كما يلي g: g: كما يلي g: g: المنتني الممثل g: المنتني الممثل g: المنتني الممثل g: المنتني المعلم المتعامد والمتجانس g: g: المنتنوي المنسوب الى المعلم المتعامد والمتجانس g: المنسوب الى المعلم المتعامد والمتجانس g: المنسوب الى المعلم المتعامد والمتجانس g: المنسوب الى المعلم المتعامد والمتجانس والمتعامد والمتع
 - . المناب النتيجة الأولى هندسيا ا $\lim_{x \to +\infty} f\left(x\right)$ وفسر النتيجة الأولى هندسيا (1
 - . يطلب تعيين معادلته (C_f) يطلب تعيين معادلته (2
 - . (D) والمستقيم ((C_f) ادر الوضعية النسبية المنحنى (3
 - $f'(x) = \frac{g(x)}{x^2}$: فان $g(x) = \frac{g(x)}{x^2}$ فان $g(x) = \frac{g(x)}{x^2}$ فان $g(x) = \frac{g(x)}{x^2}$
 - 5) استنتتج اتجاه تغیر الدالة f, ثم شکل جدول تغیر اتها.
 - . $f(\alpha)$ ثم استنتج حصرا للعدد , $f(\alpha) = 2\alpha e \frac{1}{\alpha}$ (6
 - 7) أ) بين أن المنحني (C_f) يقبل مماسا (T) يوازي المستقيم (D) في نقطة يطلب تعيين احداثياتها. (T) . (T) معادلة ديكارتية للمماس (T) .
 - (C_f) والمنحنى (T) أنشئ (8
- (9) نسمي (α) مساحة الحيز من المستوي المحددة بالمنحنى (α) والمستقيمين اللذين معادلتيهما α
 - $A(\alpha) = 2(\alpha^2 1)^2 cm^2$: بين أن

انتهى الموضوع الأول

elbassair.net

الموضوع الثاني

التمرين الأول: (04 نقاط)

جمعية خيرية تتكون من 7 رجال و5 نساء من بينهم رجل اسمه أنس, نريد تشكيل لجنة بها 3 أعضاء.

1) ماهو عدد اللجان التي يمكن تشكيلها في حالة أعضاء اللجنة لهم نفس المهام.

2) أحسب احتمال الحوادث التالية: ` A " اللجنة تضم أنس "

" اللجنة تتكون من رجلين و امرأة " B

" اللجنة بها رجل واحد على الأقل" C

. "اللجنة مكونة من امرأة على الأكثر D

3) ليكن X المتغير العشوائي الذي يرفق بكل اختيار عدد الرجال الذين يحملون اسم أنس في اللجنة المكونة . أ) عين قيم المتغير X .

E(X) عرف قانون الاحتمال للمتغير العشوائي X وأحسب أمله الرياضي

التمرين الثاني: (04 نقاط)

لكل سؤال جواب واحد فقط صحيح من بين الأجوبة الثلاثة المقترحة, عينه مع التعليل .

: الدالة الأصلية $f(x) = \frac{x+1}{x}$: بf(x) = 0 للدالة f(x) = 0 للدالة الأصلية f(x) = 0 للدالة الأصلية الدالة الأصلية f(x) = 0

$$F(x) = \ln\left(\frac{x+1}{x}\right) \quad (z \qquad F(x) = 1 - x + \ln x \quad (-x) = x - 1 + \ln x \quad$$

: ب \mathbb{R} هو الدالة المعرفة على $y'+3y=rac{5}{2}$ الحل العام للمعادلة التفاضلية

$$y = ce^{-3x} + \frac{5}{6}$$
 ($z = ce^{-3x} - \frac{5}{6}$ ($z = ce^{-3x} + \frac{5}{6}$ ($z = ce^{-3x} + \frac{5}{6}$

30 في قسم نهائي 30 متفوقين في مادة الرياضيات و 35 متفوقين في مادة العلوم الفيزيائية و 30 متفوقين في المادتين معا احتمال أن يكون التلميذ متفوقا في مادة الرياضيات علما أنه متفوق في مادة العلوم الفيزيائية هو:

$$\frac{2}{13}$$
 (ε $\frac{1}{3}$ (φ $\frac{2}{7}$ (\uparrow

 $v_n = \ln(n+2) - \ln(n+1)$: بالمتتالية العددية (v_n) معرفة من أجل كل عدد طبيعي S_n , $S_n = v_0 + v_1 + ... + v_n$ ، n يساوي :

 $1-\ln(n+1)$ (ε $-\ln(n+1)$ (ψ $\ln(n+2)$ (\uparrow

التمرين الثالث: (04 نقاط)

 $u_{n+1} = \frac{2}{2\sqrt{2} - u_n}$:المتتالية العددية المعرفة بحدها الأول $u_0 = 0$ والعلاقة التراجعية (u_n)

 $u_n < \sqrt{2}$: n برهن بالتراجع أنه من أجل كل عدد طبيعي (1

 $\lim_{n\to\infty}u_n$ بين أن المتتالية (u_n) متزايدة، ثم استنتج أنها متقاربة وأحسب (2

 $v_n = \frac{u_n}{\sqrt{2} - u_n}$: لتكن المتتتالية (v_n) المعرفة من أجل كل عدد طبيعي (v_n) المعرفة من أجل (3

أ) بين أن المتتالية (v_n) حسابية يطلب تعيين أساسها وحدها الأول.

elhassair.net

. n بدلالة u_n بدلالة , n بدلالة v_n بدلالة

بوليكن المجموع:
$$w_n = \ln(u_n)$$
 : n عدد طبيعي عدد طبيعي المعرفة من أجل كل عدد طبيعي (4

$$S_n = w_0 + w_1 + ... + w_n$$

$$S_n = \frac{1}{2} n \ln 2 - \ln (n+1)$$
: -بین أن

التمرين الرابع: (08 نقاط)

نعتبر الدالة
$$g$$
 المعرفة على \mathbb{R} كما يلي: $g(x) = x^2 e^x - e$ و $g(x) = x^2 e^x - e$ كما يلي: $g(x) = x^2 e^x - e$ المعلم المتعامد المتجانس $g(x) = x^2 e^x - e$ (كما في الشكل المقابل)

$$g(1)$$
 احسب (1

بقراءة بيانية عين إشارة
$$g(x)$$
 ثم استنتج إشارة (2) بقراءة بيانية عين إشارة $g(-x)$

المعرفة على
$$\mathbb{R}^*$$
 كما يلي: الدالة f المعرفة على \mathbb{R}

$$f(x) = e^{-x} - 2 - \frac{e}{x}$$

و
$$(C_f)$$
 تمثيلها البياني في مستو منسوب إلى المعلم المتعامد المتجانس $(0; \vec{\imath}, \vec{j})$.

$$\lim_{x \to 0} f(x)$$
 احسب النهايات الآتية: $f(x)$ انهايات الآتية: (1

و کا میں انتائج ہندسیا
$$\lim_{x \to +\infty} f(x)$$
 و کا میں انتائج ہندسیا $\lim_{x \to 0} f(x)$

$$y=e^{-x}-2$$
 بيّن أنّ المنحنى (γ) الذي معادلته: 2 و المنحنى (C_f) متقاربان بجوار (C_f) متقاربان بجوار (γ) بالنسبة إلى (γ)

(3) بیّن أنّه: من أجل كل عدد حقیقي
$$x$$
 غیر معدوم لدینا:
$$f'(x) = \frac{-g(-x)}{2}$$

4) استنتج أن الدالة
$$f$$
 متزايدة تماما على كل من المجالين $[-1;0]$ و $[-1;0]$ و متناقصة تماما على المجال $[-\infty;-1]$ ، ثم شكل جدول تغيرات الدالة f

بيّن كيف يمكن إنشاء المنحنى
$$(\gamma)$$
 انطلاقا من منحنى الدالة $x\mapsto e^x$ ثم ارسم بعناية كلا من المنحنيين (5) و (C_f) و (γ)

$$x=e^2$$
 و $x=e$ و المستقيمات ذات المعادلات $x=e^2$ و $x=e^2$ و $x=e^2$ المستقيمات ذات المعادلات

انتهى الموضوع الثاني

 (C_g)